Over de technische achtergronden van de fiets - the technical background of the bicycle
Home » warmtebehandeling

  Warmtebehandelingen bij aluminium

 

Aluminium is momenteel de standaard materiaalkeuze in de framebouw. Toch is puur aluminium als metaal niet sterk genoeg. Er zijn methodes om de sterkte van metalen te verbeteren, zoals legeren (mengen) en warmtebehandelen. Om te begrijpen hoe dit werkt, moeten we verschillende types micro-structuren in vaste stoffen bekijken. Glas is amorf d.w.z. de moleculen bezitten geen regelmatige posities t.o.v. elkaar. De meeste stoffen, ook metalen, zijn kristallijn d.w.z. de atomen zijn volgens vaste patronen gerangschikt. Dit kan volgens drie structuren:  1. Kvg (kubische vlakken gecentreerd o.a. koper, alfa‑ijzer); 2. Krg (kubisch ruimtelijk gecentreerd o.a. gamma‑ijzer, molybdeen); 3. Hds (hexagonale dichtste stapeling o.a. beryllium, magnesium).

   De kvg en hds structuur zijn maximaal dichte stapelingen: de vulgraad is 74%; bij de krg structuur is de vulgraad 68%. Er zijn dus altijd gaten in elke moleculenstructuur de zogenaamde intersitiële ruimtes; deze kunnen andere atomen bevatten. In een stapeling van atomen kan een lege plaats voorkomen (een vacature) of een vreemd atoom (een substitutie). Met een algemene term noemen we deze fouten “dislocaties”. Als de temperatuur hoger wordt, nemen door de bewegingen van atomen de vacatures in aantal toe. Substitutionele en intersitiële atomen kunnen zich via vacatures verplaatsen (diffusie).

   In metalen ontstaan onder belasting zichzelf verplaatsende dislocaties; deze vervormen het rooster zo sterk, dat ze hun eigen beweging hinderen. Er moet voor verdere vervorming steeds meer energie worden toegevoerd; daarom is de breuk-energie van metalen zo hoog. De vervorming van het rooster verklaart de versteviging die optreedt: hardheid en treksterkte nemen toe, de rek af. Alle vreemde atomen hebben invloed op de dislocatiebewegingen. Op deze manier neemt door legeren (het mixen van metaalmoleculen) de rekgrens en treksterkte toe, zeker als die atomen in groepjes voorkomen. Dit bereikt men o.a. door warmtebehandeling (de diffusie verloopt dan sneller)!   

   Door legeren, kan men de materiaaleigenschappen van metalen dus verbeteren; andere methodes hiervoor zijn koudverstevigen (mechanische bewerking o.a. het “trekken” van buis), of veredelen (warmtebehandeling). Vaak zal men een combinatie van deze drie methodes kiezen. De kristalstructuren van legeringen zijn erg belangrijk voor de eigenschappen ervan. Als we een legering hebben, bestaande uit metalen A en B, zijn er 3 mogelijkheden: 

  1.Metaal A en B lossen in elkaar op (FIG.1).   2.Metaal A en B lossen niet in elkaar op (FIG.2).   3.Metaal A en B lossen deels in elkaar op (FIG.3).

   Gewoonlijk hebben we in legeringen te maken met de laatste structuur. We nemen als voorbeeld een mengsel metaal A smeltpunt 550°C en B 600°C. Stel onze smeltkroes heeft een temperatuur van 700°C; we laten hem langzaam afkoelen. In de smelt zijn de moleculen A en B gelijkmatig over de vloeistof verdeeld. Eerst zullen er B kristallen ontstaan. Gedurende dit proces zal de concentratie van de A moleculen in de grondmassa  (vloeistof) dus toenemen, tot het moment waarop zich A kristallen gaan vormen. Er ontstaat uiteindelijk een grondmassa, bestaande uit A en B moleculen, met daarin kristallen A en B. De concentratie A en B in de grondmassa zal niet gelijk zijn aan de oorspronkelijke verhoudingen in het mengsel. De mechanische eigenschappen ervan, kunnen daarom verschillen. Als we zeer snel koelen b.v. in water, zal de legering het meest homogeen zijn (een zeer fijne kristalstructuur). Naarmate de afkoelingstijd langer is, zullen de kristallen groter worden.

   Bij veredelen kennen we ten eerste de oplossingsbehandeling; hierbij verhitten we tot een bepaalde (hoge) temperatuur. Als voorbeeld nemen we aluminium uit de 6000 serie; dit wordt gedurende een half uur verwarmd tot 535 °C (hierbij lossen allerlei legeringelementen opnieuw op). Ten tweede de precipitatie­behandeling: we koelen snel af. Het gevolg is oververzadiging en er vindt uitscheiding (=precipitatie) plaats van legeringselementen in de kristallen. Deze nieuw uitgescheiden stoffen zullen het kristalrooster verfijnen en vervormen. De legering wordt hierdoor harder en sterker. Die uitscheiding zal in de loop der tijd verbeteren. We noemen dit ouderen. We kunnen het ouderen versnellen door nog een derde warmtebehandeling uit te voeren: kunstmatig ouderen. Bij 6000 aluminium gaan we na de oplossingsbehandeling kunstmatig ouderen bij 180°C gedurende 10 uur. Verbindingsmethodes met grote warmte-inbreng zoals lassen, zullen de veredeling teniet doen. Na het lassen van een frame met 6000 aluminium wordt de warmtebehandeling nog eens geheel overgedaan! Dat kost tijd en geld. Kleine bouwers kiezen meestal voor een buis uit de 7000 serie; hier is geen oplossingsbehandeling nodig, alleen kunstmatig ouderen: vier dagen na het lassen verhitten we 6 uur bij 90 °C en 4 uur bij 150 °C.

  De meest voorkomende kwaliteitsaanduiding voor aluminium is de registratie van de Aluminium Association (Amerikaans). Als voorbeeld nemen we AA 2024-T4. Het belangrijkste legeringselement is hier koper (kenmerkend voor de 2000-serie). Een bekende handelsnaam hiervoor is duraluminium. Het toevoegsel T4 is een aanduiding voor de gebruikte veredeling van de buis. Bij T4 behandeling wordt na de extrusie (het trekken van de buis) een thermische oplossingsbehandeling gegeven tot ± 530°C. Hierna wordt snel afgekoeld tot 220°C. Vervolgens laat men natuurlijk ouderen bij 20°C. Bij de T5 behandeling wordt na extrusie niet meer opgelost, maar alleen kunstmatig verouderd, d.w.z. 4 tot 10 uur verhit bij 160 tot 190°C. Bij behandeling T6 wordt na oplossingsbehandeling kunstmatig verouderd. Zo worden de rekgrens en de treksterkte hoger; maar de rek neemt af. Om aluminium sterk te krijgen, halen de metal-lurgen al hun trucjes uit de kast. De rekgrens van stalen echter is 2 tot 3X zo hoog.

   De 5000-serie bevat vooral magnesium; de 6000-serie magnesium en silicium; de 7000 vooral zink, maar soms ook zirkonium en/of scandium; de 8000 bevat lithium (o.a. Reynolds X-100). De legering AA 5086-H18 (o.a. Vitus Duralinox) is niet sterker te maken door warmtebehandeling. De hoge treksterktes van deze legering zijn te danken aan koude vervorming (mengkristalharding, de H in de toevoeging). Het materiaal is goed te lassen, maar er vindt rekristallisatie plaats en de gewonnen sterkte wordt deels teniet gedaan. Bij Vitus lijmt men en is er geen probleem.

   Aluminium is te lassen via het TIG en MIG-proces met argon als beschermgas. Het lassen van aluminium eist veel vaardigheid van de lasser! De juiste keuze van de lasdraad is zeer belangrijk. De buisfabrikant zal bij elke buissoort een bepaald type lasdraad specificeren. De lasbaarheid van warmtebehandelde buis is in het algemeen nogal slecht. Bij de eerste generatie buizen waren de legeringen AA 6061-T6  (magnesium-silicium) en AA 7020-T6 (zink-magnesium) goed te verwerken; de kristalstructuur was na het lassen wel verslechterd, maar herstelde zich door ouderen bij kamertemperatuur (dit duurde ongeveer een maand). De moderne buizen worden dunner en sterker en hebben wel een warmtebehandeling nodig.

   Als voorbeeld van de oude serie neem ik de Altec-ATB-buizenset van Columbus uit 1997. Dit was een AA 5086 buis met een gewicht van 1750 gram per set. De opvolger Altec2 uit 2005 is van de 7000 serie en weegt nog maar 1136 gr (een derde minder!). Helaas wordt daarmee ook de verwerking lastiger. Voor de eerste Altec was geen warmtebehandeling nodig. Bij Altec2 moet kunstmatig worden verouderd. Vier dagen na het lassen verhitten we 6 uur bij 90 °C en 4 uur bij 150 °C. Om een voldoende sterk en stijf frame te krijgen, kiest men bij Altec2 voor de liggende onderbuis als wanddiktes: 2,2/ 1,0/ 1,4 mm. Deze onderbuis is bij de fabrikant Easton in type Sc7000 zelfs twee tiende mm dunner: 2,0/ 0,8/ 1,2. Hierbij worden de grenzen van het veilige wel erg dicht benaderd; ze geven als voorschrift dat er geen (zware) verlichtingsaccu in de bidonhouder geplaatst mag worden om uitscheuren van de bidonnokken te voorkomen! Ook hier moet  kunstmatig verouderd worden na het lassen.

   Nog lastiger te verwerken zijn de AA 6061 buizen van bij voorbeeld Easton; hier moet er zelfs eerst een oplossingsbehandeling uitgevoerd worden: een half uur bij 530 °C, dan afkoelen met heet water; daarna kunstmatig ouderen (10 uur bij 180°C). Al die nabewerkingen kosten veel tijd, energie en geld. De investeringen die hiermee gemoeid zijn, maken de productie van frames met deze buizen door kleine bouwers onbetaalbaar.

   Het lijmen van frames is weer uit de mode geraakt. Als we lijmen, kunnen we een sterke niet lasbare buis kiezen b.v. AA 7075-T6, maar houd in de gaten, dat de lage stijfheid de beperkende factor is, niet de treksterkte! Hoogwaardige aluminiumlegeringen zijn niet makkelijk leverbaar; laat u geen onbekende rotzooi aansmeren! Veel fabrikanten bestellen hun buis naar eigen specificaties direct bij de aluminiumfabriek. In Nederland verkrijgbaar aluminium wordt vaak niet naar de Amerikaanse AA-norm ingedeeld, maar naar 'n DIN- of ISO-norm  In ISO is T4 TB, T5 TE en T6 TF.  Vergelijkbaar zijn: AA 6061: DIN AlMg Si 1: ISO Al-Si1Mg ;  AA 7020: DIN AlZn 4,5 Mg 1: ISO AL-Zn4Mg ; AA 7075: DIN AlZnMgCu 1,5 : geen ISO norm..

 De enige goede lasmethode voor hoogwaardig aluminium is TIG-lassen; helaas is de benodigde apparatuur nogal prijzig. Men maakt hierbij gebruik van een lastoorts, waarbij een vlamboog getrokken wordt tussen een wolfraam spits en het werkstuk, onder een beschermgas als argon of helium. Net als bij autogeenlassen wordt met een lasdraad materiaal toegevoegd. De kijk op dit las-procédé is zeer goed te noemen. De warmte-inbreng is gering en de las behoeft nauwelijks nabewerking. Vaak is het noodzakelijk om ook de binnenkant van de buis tijdens het lassen d.m.v. inert gas (backing gas) te beschermen. Zoals bij elke verbindingsmethode hangt de kwaliteit af van het vakmanschap van de bouwer.

Enige richtwaardes voor dit proces:  Aluminium (lassen met wisselstroom!): wanddikte 1,5mm, elektrode 1,6mm,  las-stroom 115 A, argon 6 l/min, lasdraad 1,6mm

Kies bij AA 7000 een lasdraadtype 5356, 5180 of 5183.  Voor AA 6000 hebben we lasdraad 4043 of 4145 nodig. Speciale legeringen met Scandium of Zirconium hebben een speciale lasdraad nodig die door de buisfabrikant geleverd wordt!

Het lassen van aluminium is nogal bewerkelijk. We beginnen met ontvetten bijvoorbeeld met aceton; dan moet de oxide laag van de buis eraf geschuurd worden met Scotch Brite of RVS-schuursponsjes (geen schuurpapier). Ontvet daarna nog eens. Na de laatste ontvetting moet de buis binnen een uur verwerkt worden om de nieuwe vorming van oxides te voorkomen. De vooropening tussen de buizen bij het lassen moet ongeveer 0,5mm zijn; meer dan 0,75mm kan al problemen opleveren. De naad moet in een keer gelegd worden; begin en eind van de las moeten aan de zijkant zitten (neutrale lijn). Er mag geen tweede keer met de lastoorts over de las gelopen worden om correcties te maken of een gladder oppervlak te krijgen. Direct na het lassen, als het frame nog warm is, moet het eventuele richten plaatsvinden. De buisfabrikanten zijn tegen het glad vijlen van de las, omdat de kans op beschadiging groot is en de verbinding er niet sterker van wordt; aanbevolen wordt schuren met schuurpapier 400 of  600.

 informatie via Internet

Een neutraal overzicht over aluminium is te vinden op:  http://www.bikepro.com/products/metals/alum.html (er staat ook wat over titanium en beryllium)

Alle fabrikanten hebben uiteraard een website met de nieuwste informatie b.v. http://www.eastonbike.com/PRODUCTS/TUBESETS/tubesets__top.html

Leuke framesets uit Italië :  http://www.columbustubi.com/ 

Ook Reynolds maakt diverse aluminium buissoorten: http://www.reynoldstechnology.biz/